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ADVANCES IN APPLIED MATHEMATICS 2, 400-416 (1981)

Target Patterns in Reaction-Diffusion Systems

PATRICK S. HAGAN*"t

Department of Mathematics. Stanford University. Stanford, California 94305

We consider the general reaction-diffusion system A, = F(A) + cD r 2A +
cg(.F, A), 0 < ( - I, where the small term cg(, ZA) represents the effects of localized
impurities. We assume that the system A, = F(A) has a stable time-periodic solution.
Then we construct stable target pattern solutions of the full system. For typical
initial conditions we find that these target patterns will arise only if g(x'.A) ;. 0.
Finally, we determine how target patterns interact and show that higher frequency
target patterns eventually engulf neighboring lower frequency target patterns.

1. INTRODUCTION

In some chemical and biological systems confined to two spatial dimen-
sions, target patterns are commonly observed: concentric circular concentra-
tion waves which expand outward with new waves being generated at the
center. For example, Belousov-Zhabotinski (B-Z) reactions 11-4] exhibit
target patterns, as do fields of aggregating D. discoideum [5-81. (See Fig. 1.)

Target patterns have been investigated previously [9-151. Here we con-
sider the general system

A, = F(A) + cDm V 2A + eg(i,A), 0<e< 1. (1.1)

In (1.1) the diffusion term is small because we have chosen to look for
solutions which vary on long spatial scales. We have done this since
diffusion tends to make A spatially uniform. Also, (1.1) is spatially inhomo-
geneous due to the small term eg(, A). For the B-Z reaction, this term can
arise from particle contaminants and other impurities [3]. For fields of
D. discoideum, this term arises from the different starvation states of the
individual amoebas [6].

We will construct formally stable target pattern solutions of (1.1), first for
the case g(.i, A) 0 and then for the general case g( i, A) 9 0. We will find
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402 PATRICK S. HAGAN

that the target patterns for g( i, A) 0 occur only for special initial condi-
tions. However, for g(iF, A) ; 0 they arise even if the system is initially well
stirred.

This matches the experimental observations of the B-Z reaction in [3].
There it is reported that there are small particles at the centers of most
target patterns, and that filtration of the chemicals to remove impurities
eliminates nearly all of the target patterns.

We also determine how target patterns interact. We find that higher
frequer -y target patterns engulf nearby lower frequency patterns. This
matches the observations in I!].

2. THE GOVERNING EQUATION

We assume that at c = 0, system (1.1) has a stable time-periodic solution
A(t, i) = B(t) B(t + P) with period P. We now use two-timing to solve
(1.1). We let T = t, we expand A as

A(,, t, ) = A°(t, T, i ) + A'(t, T, 1) +. . . , (2.1)

and we require A!, A2 ... , to be bounded in t. Substituting (2.1) into (1.1)
we find

At - F(A°) = 0, (2.2)

A, - FA(A°)A =-A + Dm v 2 AP + g(,AP), (2.3)

Here the matrix FA(AP) is the derivative of F(A) with respect to A.

The solution of (2.2) of interest is

AP = B(t + k(T, 5i)), (2.4)

where the function 4(T, 1) is undetermined at this stage. Substituting (2.4)
into (2.3), we obtain

A', - F (B)A' = --B'4, + DuB'v 24 + DxfB" v4 v + g(ZB),

(2.5)

where the argument of B, B', and B" is t + 4( T, _W).
Now the equation

-, FA(B(t + ))u =0 (2.6)

I
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has a periodic solution u = B'(t + 4'). To ensure that A°  B(t + 4) is a
stable solution of (2.2), we assume that all solutions of (2.6) which are
linearly independent of 8'(t + 4') decay exponentially. Under these condi-
tions there is a unique row vector zr(t + 4') which satisfies

zT+ zFA(B[t + ')OT, z(t + 4)B'(t+4')= I, forallt,

(2.7)

and is periodic with period P. Moreover, the solution A(t, T, _i) of (2.5) is
bounded in t if and only if

fPzT[-B' T + D ,B' V 24 + DfB"V V_ •4 + g(iFB)] ds = 0, (2.8)

where the argument of zr and B is s + 4'(T, _i). Using periodicity, we
rewrite (2.8) as

' = D(v 4+ rv,'. vIP) + a(), (2.9)

where zhe constants D, r and the function a( .) are

D =-fPZ(s)DMB'(s)ds/P, D =fPzT(s)DMB"(s) ds/P,
0 0

a(i) --fPZT(s)g(.,B(s)) dI/P. (2.10)

0

In summary,

A(t, .) = B(t + 4'(T, -i)) + 0(E), (2.11)

where 4' evolves on the long time scale T = a according to (2.9). Equation
(2.9) is the key equation that describes how target patterns evolve and
interact. The derivation of (2.9) from (1.1) is very similar to a result of John
Neu [161.

To interpret the a(.F) term in (2.9), consider (1.1) with the diffusion
matrix Df set to 0. Since c < 1, at each spatial position f there must be a
stable time-periodic solution near B(t). To find this solution, we note that
DM = 0 in (2.10) implies that D = 0, so (2.9) shows that 4' = a(Y)T.
Substituting this into (2.11), we find that A = B(t[! + ca(.) + ... 1) +
0(t). Thus the a(Y) term in (2.9) represents the local first-order frequency
shift due to the inhomogeneous term cg(i, A).

a:e too"



404 PATRICK S. HAGAN

3. SPATIALLY HOMOGENEOUS SYSTEMS

Here we consider systems with g(iF,A) =0. Then (2.10) shows that
a(.i) = 0, so (2.9) becomes

4T =D[V+2' +Fr .i . (3.1)

To solve (3.1) we apply the Cole-lHopf transformation

Z=e (3.2)

finding

Z r = D V 2 Z. (3.3)

The initial value problem for (3.1) can be solved by solving the initial
value problem for (3.3). Thus, in n space dimensions

(T.r) I Iog (47DT)n/2fexp[ r (0,)

(.-f).• (i- /4DT] dv. (3.4)

Now (3.4) shows that if 4,(0, x) is bounded, then O,(T, f) goes to a constant
as T becomes large. Thus when g(. A) = 0, no target patterns evolve for
bounded initial conditions.

Next, we construct stable target pattern solutions of (1. 1) with g( .i, A) =_ 0.
These solutions must have 0(0, i) unbounded, and so they may be of
mathematical interest only.

By solving (3.3) and using (3.2), we find that (3.1) has the solutions

0(7, 1) =T/r + r 'log (3.5)

in two dimensions and

(T, f) = T/r + r 'log{r-Isinh'/Dr}, (3.6)

in three. Here r =II.i, /0 is the zero-order modified Bessel function, and Wo
is any positive constant. Moreover (3.4) shows that the solutions in (3.5) and
(3.6) are stable to all bounded initial perturbations.

Equations (2.11) and (3.5) yield target pattern solutions in two dimen-
sions. Similarly, (2.11) and (3.6) yield time-periodic, spherically symmetric
solutions in three dimensions. When r 3, 1, both (2.11), (3.5) and (2.11),

;I
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(3.6) reduce to

A(t, Y) B(tl + tw/I' + Vw/Dr/F + ) + 0(E). (3.7)

Since c -c 1, these waves are ingoing if F > 0 and outgoing if F < 0.
Target patterns are observed in the B-Z reaction and in D. discoideum,

even if the systems are well stirred initially so that 4,(0, .Y) is nearly constant.
In the next section we show that the observed target patterns can be
explained if the inhomogeneous term g(., A) is not identically zero.

4. SPATIALLY INHOMOGENEOUS SYSTEMS

Here we consider the inhomogeneous case, where g(Y, A) 9 0 in (1. 1) and
hence a(Y) 9 0 in (2.9). Specifically, we assume that a(iF) is smooth and
that f Fa(i) dx > 0, where the integration is over all space. For mathemati-
cal clarity, we also temporarily assume that a(Y) = 0 for all J. -i' 0 I> R,
for some fixed io and R. With these restrictions on a(i), we will now solve
(2.9) for bounded initial conditions 4'(0, Y). We will find that the solution
,(T, J'), together with (2.11), will yield a single target pattern centered near

Y = io. This target pattern will depend only on a(i), D, and F, and will be
independent of the initial condition 4'(0, .).

First, we apply the Cole-Hopf transformation (3.2) to (2.9), finding

Z r = Dv 2 Z + ra(i)z, Z(0, i) = erL(° ') (4.1)

Next, we separate variables Z(T, i) = ec7TP(i), obtaining the eigenvalue
problem

Dv 2 0 + Fa(i)4 w , 0(. ) bounded. (4.2)

With the restrictions placed on a(i), it is known [17, 18] that in two
dimensions there are a finite number m > I of discrete real eigenfunctions
4D(), 4b2('), .. ,(F). Their eigenvalues t, . ... ,,, satisfy

W 1 > W2 -  
3  " Wm > 0. (4.3)

Also the eigenfunction 01) with the largest eigenvalue w, is of one sign
for all Z Furthermore, for each j = 1, .... m,

tj(.e) - Cj(O)(kjr)-1/ 2e -k ,"  when kjr 1 1, (4.4)

i I



406 PATRICK S. HAGAN

for some C(8). Here

k j =w _1D ,(4.5)

and r and 0 are defined by i? -- F r(cos 0, sin 0).
Additionally there is a two dimensional continuum of eigenfunctions

4 (k, 5i). These functions have the eigenvalues -D k 12, and are the solu-
tions of

4 ) = 4D" f ' '(I I l -jVI)a(j7)$(k*,y)dy, (4.6)

where H0'( is the zero-order outgoing Hankel function. Finally, the continu-
ous eigenfunctions plus the m discrete ones form a complete set over the
space of E 2 functions.

We now solve (4.1). First we define Z(T, 3i) = H(T, i) + u(T, i), where
H(T, i) is the solution of

HT = D V 2 H, H(0, Fc) = Z(0, .i) = er ep(°'  ). (4.7)

Then u is the solution of

UT DV2u+ra()u+ra()H(T,x), u(0, 5)----0. (4.8)

At each T, a(i)H(T, i) is in E 2, so we can solve (4.8) by expanding u and
a(i)H(T, 2 ) in terms of the eigenfunctions 4by(G) and 4b(k, i). This yields

O(T, i) = -'1logZ(T, i), (4.9)

where

m

Z(T, 3e) = #ie"T41(3) + i fl3e,' T4~(i~) + H(T, i)
j= 2

m

- 7 yj(T)$O(i) + v(T, i). (4.10)
j=I

Here,

Ij -- 4~,(r)e r¢(°. ) dx .[ 0 ) dx

yj(T) =) x .Jc - 2(i) dx], (4.11)
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and v is the contribution from the continuous spectrum

v(T, i) -f q(, k)bk dk,

--(T, k) fjTeDA2Srf4*(k, i)a(i)H(T - s, i) dxj ds, (4.12)

where * denotes complex conjugate.
Now (0, i) is bounded, so there are constants C, and C2 such that

0 < C, !5 H(T, 3) !5 C2 for all iand all T> 0. Thus (4.11) shows that each
yj(T) is also bounded. In Appendix I we show that for some constant C3,
I v(T, i) 1!5 C3T for all W and all T _> 0. There we also show that I v(T, i) 1
< fle iTI(D ) + H(T, i) at all i when T >> 1. Finally, (4.3)-(4.5) show
that each of the first m terms in (4.10) decays exponentially in space, but
grows exponentially in time, with the first term growing at the fastest rate.

Therefore, in the region where

ew, T - k l r--o l < 1, T>> 1, (4.13)

the H(T, 3) term is much larger than all the other terms in (4.10). Using
(4.9) and (2.11), we thus find that

A(t, i) B(t + r-'log H(T, i)). (4.14)

Moreover, (4.7) shows that H(T, x-) goes to a constant as T becomes large.
So we conclude that in the region where (4.13) holds, the system evolves into
a spatially constant bulk oscillation.

On the other hand, in the region where

e'° r k l---°  1, (4.15)

the first term in (4.10) is much larger than all the other terms. Noting that
0t(x ) > 0 for all , we rewrite (4.9), (4.10) as

4,(T, i) = wIT/I + r-' log p,,(3) + I-'E(T, i). (4.16)

Here the error term E(T, i) is

E(T, i) = log { + e-1 '- ,) )

+e- 1T(H(Ti) - y(T)41,.(i) +4.17

(4.17)
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Equations (4.3)-(4.5) show that E(T, i) < I when (4.15) is satisfied. They
also show that E(T, i) decays exponentially in T for fixed e. Together,
(4.16) and (2.11) yield our target pattern solution

A(t,i)= BQtI+ cwllr]t+ r-'logs(i) + r-' log b,) + 0(c),

(4.18)

where we have omitted the small error term E(T, 3).
We now examine the qualitative behavior of the target pattern solution

(4.18). First, the bulk oscillation B(t) is periodic with period P, so (4.18) is
time-periodic with period P, = P/(I + wew/F). Moreover (4.4) shows that
when k I I - .VO I =- k , r > 1, (4.18) reduces to

A(t, i) ---B([1 + c,,/r]t - klr/F + r-'IlogbiC1 (O)(klr) - l/ 2)

(4.19)

So when k r >> 1, the target pattern is asymptotic to a cylindrical wave with
a radial phase speed

Vh = r(l + Ew,/r)/k I = sgn(r)V F-I p p -- 1P 2 . (4.20)

In particular, the target pattern is outgoing if r > 0 and ingoing if r < 0,
the opposite of the target patterns in Section 3.

Second, the target pattern solution (4.18) is valid only in the region where
(4.15) is satisfied. Since T = et, the region occupied by the target pattern
spreads outward from x' = £ at the constant radial speed

ip-P p,/2

vs D W, D- = DiP P, t 1 (4.21)

Recall that the diffusion matrix irn (1.1) is eDM. We can make all
dependence on t explicit by replacing i by V'iid. In terms of the new
variable xd, the diffusion matrix in (1.1) is just DM and the velocities Vph and
v,, in (4.20) and (4.21) are multiplied by C-I/2,

Finally except for the overall phase shift r log b , the target pattern
(4.18) is independent of the initial conditions $(0, ). It depends only on r,
on the largest eigenvalue w,, and on its eigenfunction 4(i). Moreover,
a(x-) 0 except in the area IF -- i I< R. If R is small, then w and (D are

'A
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explicitly given by

W, Dkj,

277D +Ff a(i)logl3F- j0 Idx
ki =2exp -{ 1 + .. , (4.22)

rFf a o dxJ

q 1 i) =27D/(rfa(f) dx) +±O(R 2 log R) for Jf-.f 1!:::R,

,()= Ko(k, I£_ -£eo1) [1 + 0(R21log R)] for I£i-£ol- ! R,

where y is Euler's constant and Ko is the zero-order modified Bessel
function.

5. INTERACTING TARGET PATTERNS

We now assume that a(i) -- 0 except in the two well-separated regions
jx£ -Y£, 1- R, and IY -3£2 1!-< R 2. We also assume that jsl? rF(£, + s- ds
> 0 for both i 1 and i = 2. We solve (2.9) for bounded initial conditions
i,(0, i), and we find that 4i(T, f) is given by (4.9)-(4.12) exactly as before.
The only change is that some of the discrete eigenfunctions t,( ) are
centered around _ =: f, and satisfy

D(£)- C(O,)(kjr)-1 / 2ekr forr, >> 1, (5.1)

where r, and 0, are defined by i-.f I r,(cos 0, sin 0,). The other
discrete eigenfunctions are centered around i = f 2 and satisfy

C( 2 )(kr 2)-/ 2 e-k,r, for r2 > 1. (5.2)

where Y -. i 2 - r2(cos 82, sin 02). In (5.1) and (5.2), kj V- = o/D as before.
Let w, be the largest eigenvalue whose eigenfunction (.) is centered

around i = i,. Similarly, let W2 be the largest eigenvalue whose eigenfunc-
tion 4 2(.) is centered around i = W2, and assume that w > W2. Then in the
region where

ew, r-k'jx''-i l<< 1, e 1)2r-k21 i -i*2< 1, T >> 1, (5.3)

the H(T, .) term in (4.10) dominates. Thus, A(t, i) is given by (4.14) as
before. So, in this region the system evolves into a spatially constant bulk
oscillation.

it



410 PATRICK S. HAGAN.

In the region where
eT-k'ljr-4jl>> 1, eW 2T-k~j'-i21< ,(54

the first term in (4.10) is much larger than all the other terms. So here

A(t, f) = B([I + co 1/rlt + r-'lIog bD,()) + 0(), (5.5)

analogous to (4.18). Additionally, when k J[ -. f1 1>> 1, the argument of B
in (5.5) reduces to [I + ewl/F]t - k I -. fl 1/1 + -... Therefore (5.5)
represents a target pattern centered near JF = .F. Similarly, in the region

e -- k 21 -'i1>> I, e',T-kI1-i -ZI<< 1, (5.6)

we have

A(t, Y) = B([I + Cw2/F + r-'logb24)2(i)) + 0(), (5.7)

which represents a target pattern centered near x = - 2.

Finally, when T is large enough there is an overlap region where

ew T- k 'Ix - ' l > 1, e '
-

2 r - k 21'  2 1. (5.8)

For this region we keep the first two terms in (4.10), obtaining

A(/, B t + r log I l ,rTj(f) + 0(c). (5.9)
j=1

This equation describes how target patterns interact.
At any T and i where

e", r - k 'ri7 - ' > e 'a 
2T- k 2

W
x - 

r
l > i1 (5.1I0)

thej = I term is much larger than thej = 2 term in (5.9). Consequently, at
this T and f, we can neglect the latter term, and so (5.9) reduces to (5.5).
Thus, at this T the target pattern centered at Wj extends to the point f.
Similarly, at any T and Y where

e W2T - k d1x-' - x2l > ew T- k ,lj-i -- I 1> I, 5

(5.9) reduces to (5.7). So, the point i is part of the target pattern centered at
f 2 at this T. Since W, > W2 has been assumed, at any point Y eventually
(5.10) will hold. Thus, as T increases the target pattern centered near x = x
encroaches upon the other target pattern. Eventually the second target

A
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pattern is engulfed; it will be unobservable when

- -k±-2) T - I W, - i, 1. (5.12)

If a(i) =--0 except in n - 2 well-separated areas Ii -£, -R,, i=
1_. .. ,n, an analysis like the preceding one can be done. Around each point
., there is a target pattern with frequency (I + e,/F)P-' occupying the
region where e' , --A ' >> 1. As T increases, the domains of neighboring
target patterns will overlap. Then the target patterns with the larger W's will
encroach upon, and eventually engulf, their neighbors. When T is large
enough, only the target pattern with the largest to will remain.

6. EXTENSIONS

The analysis in Sections 4 and 5 pertains only to two spatial dimensions.
An identical analysis can be used for one spatial dimension. The only
change is that the (ksr)-' / factors in (4.4), (4.19), (5.1), and (5.2) are
absent in one dimension. However, the analysis for three dimensions hinges
on whether (4.2) has a discrete eigenpair w,, 0,(x) with w, > 0. If la(x-) is
large enough over a large enough volume, then such a discrete eigenpair
would exist. If such an eigenpair exists, then the analysis and results are
virtually identical to the one and two dimensional cases. Otherwise only
H(T, _) and the term analogous to v(T, x) would be present in (4.10), and
no spherical target patterns would develop.

The analysis can also be extended readily to include systems with delayed
reaction terms, which often occur in population models. For example, (1.1)
can be replaced by

A = F(A~fj G(s,A( - s, i))ds) +,fDMfV A

+cg( W,A, foOK( s,A( t -s,.W) )ds ). (6.1)

If (6.1) has a stable periodic solution A(t, x-) = B(t) = B(t + P) at c = 0,
then we again obtain (2.9)-(2. 11), and the analysis proceeds as before.

7. REMARKS

We used perturbation techniques to derive (2.9)-(2.11) from (1.1), and
then solved (2.9) to obtain target patterns. By using perturbation theory, we
have restricted attention to solutions which are near the stable limit cycle B

4. ii 1i -I
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for all t and f. There may be other stable solutions of (1.1) which are far
from the limit cycle at some i for all t [10].

Also, the perturbation scheme we used tacitly assumes that g(je, A) varies
significantly only on the 0(1) and larger length scales. This restriction is
unnecessary. If g(., A) varies significantly on very small length scales, a
similar perturbation scheme can be employed. This alternative perturbation
scheme yields solutions of (1.1) given by (2.9)-(2.11), exactly as before.

Additionally, the length scale in (1.1) has been chosen so that the
diffusion term is the same order as the inhomogeneous term g(., A). This
was necessary. If we used a shorter length scale, then the diffusion term
would dominate the inhomogeneous term. To leading order, we would
obtain (2.11) and (2.9) with a(3 ) --0. As shown in Section 3, if a(5) =-0
and if 0(0, 5 ) is bounded, then 4(T, i) - constant as T becomes large. That
is, after an initial period of time, 4 would become constant (to leading
order) on all length scales smaller than the one we have used. On the other
hand, if a larger length scale was used, then the cg(i, A) term would
dominate the diffusion term. This results in an inconsistent perturbation
scheme.

The target pattern solutions obtained in Sections 4-6 depend heavily on
the sign of IF. If r > 0, then the target patterns are outgoing, their frequency
is higher than the frequency of the bulk oscillation, higher frequency target
patterns engulf lower frequency ones, and higher frequency target patterns
have higher wave numbers. If r < 0, the opposite of each of these occurs.
From experimental observations it is clear that F > 0 for both the B-Z
reaction and the aggregation of D. discoideum.

In both the B-Z reaction and in D. discoideum, the periodic solutions are
relaxation-oscillation type limit cycles. In this type of cycle, the reaction
evolves slowly down a quasi-steady branch, it then jumps to a second
quasi-steady branch, it evolves slowly up this branch, and then completes
the cycle by jumping back to the first branch. As the reaction nears one of
the jump points, a very small perturbation can cause the reaction to jump
prematurely. So, even very small inhomogeneities g( i, A) can give rise to
significant frequency shifts a(.W). Thus target patterns may be more preva-
lent for relaxation-oscillations than for other types of periodic solutions.

Finally, in [12, 14, 151, a phase-diffusion theory was developed. In this
theory, target patterns are given by (2.11), where 4 evolves according to

OT = DV 2 + a(j) (7.1)

instead of (2.9). However, in two dimensions the solution of (7. 1) is

O(T,,Y) = H(T,Y) + (4wD)- fa(y)E,(Iig-_I2/4DT) dy, (7.2)

1
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where H is the solution of HT = D V 2H with H(O, 3i) = (O, i), and E, is
the exponential integral. Equation (7.2) predicts that target patterns will not
engulf each other, that the frequency of a target pattern will essentially be
the frequency of the bulk oscillation, that the region occupied by a target
pattern grows like I j - x0 1 I 2b Df-T, and that the distance between succes-
sive rings of a target pattern grows exponentially in (i - j. We conclude
that target patterns cannot be explained by phase-diffusion theory.

APPENDIX I

Here we use Theorems 3 and 5 in [181 to estimate the size of v(T, i),
which is defined in (4.12). To do this, we assume that a(i) has continu-
ous second derivatives and we recall that for some R, a( i) =_-0 for all
I j - j 0I R. Also, since H(T, 3) is the solution of a heat equation with
smooth bounded initial conditions, we note that there are constants M0, MI,
and M2 such that

IH(T, 3) 1<5Mo, IH(T, 3) 1!5M,,

IV 2 H(T, 3) 1<_-:M2, for all I i - £o 1<5 R, all T > 0. (A.1)

First, we define

a(T, k) --fV*(k , .5)a(5 )H(T, i ) dx, (A.2)

where * denotes complex conjugate. Then at any T, Bessel's inequality
shows that

T 2

IIv(T, ) 112 - F2 lim J e k so(T - s, k) ds dk, (A.3)
N-oc K(N) 0

where 11 112 is the P 2 norm and K(N) is the domain I/N !!Iki-N.
Using the Cauchy-Schwartz and Bessel inequalities now yields

v(T, F2 TT J H a(T-s, k)*(T-sk)dk ds

From (A. 1) we now obtain

Itv(T,-')112 <rFlM0 ta(W)11 2T. (A.5)

*

€ o .
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Since Dv 2[H(T, .i)a(i.)] + Fa(x)H(T, £) is also in C2, a sequence of
steps like (A.2)-(A.5) shows that

11Dv 2v(T,-i) + ra()v(T, )11 2 -1 r II[mMo I r Il1a2112

+D{Molv 2all 2 + 2M,11 I al 112 + M2 11la1 2}]T. (A.6)

So there is a constant M4 such that 1iv 2v(T, -)11 2 < M4T for all T > 0.
Thus, v and V 2v are both in C2, so a Sobelev-type inequality shows that

Iv(T,i) 1! 2- (1lv(T, W)12 + 1iv 2v(T,)I12)1/2. (A.7)

Therefore, there is a constant C such that

I v(T,i) 1!5 CT for all f and all T-> 0. (A.8)

For our purposes, (A.8) is an adequate estimate for v in the region
I -io 1 !5 R. We now obtain sharper estimates for v in the region I -e -- Wo I
> R. By substituting (4.10) into (4.1), we discover that v is the solution of

v- Dv 2v = Fa()v + Fa(i)H(T, i) - I oj(T)Oj(i), (A.9)
j=1

v(, i) - 0,
where

aj()= f4j(F ()HT F x-dj (A. 10)

Therefore, we apply the Green's function

G(T- s,-V) =[41rD(T- s)] 'exp- 4DI- }.-1 (A. 11)

to (A.9) and obtain

v(T-i ) 1<-1 JO + IJ1 I + I I i1, (A. 12)

j=I

where
10 11FfofG (T -s, - a(.V) v(s,j) dy ds, (A. 13)

r - s, Y -f)a()H(s. V) dyds, (A.14)

Here 0 is the region I . -. O 1!< R.

fo
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Equation (A.8) shows that a(.W)v(T,.f) J!5 BT for all T_> 0, for some
constant B1. Therefore

JJ'j< BjI Fj rfT~ - s,. -V) dy, (A. 16)

jJ°)<B F ITR e-qlog I + q 17)

where q = (f . I - R )2/4DT. Similarly, I a(Y)H(T. i) I B2 for all T >
0, for some constant B2. So

R 2  ( 1)A.8
IJ'j<B21FI-D e-'log (I + q .(A.18)

Finally, there is some constant Nj such that I(T)j(W) 1-5 Nje -AV - -roI1 for
all 3 and all T > 0. Thus

Sfo(T f ( - s, W-ij7)eI 5 -  dy ds, (A.19)

Ii 1< -ff re-k,r- ( -Ir -2i/ 'z4DTlog( I + 4DT/ (r - Ji-.o 1)2} dr.

(A.20)

From (A.20) we find that

Ii I< 5T - +2 D ]&I' -e/ T, if kj ] -o 1:5 2jT,

[j j<£o 5NTI+2eor-,,-.,, if kij I _ 3o> 2,xjT.I~i,<5A Tl +2f 0( jk)-T 0  wT

(A.21)

When (i -, j -R , "4-DT, we use (A.12), (A.17), (A.18). and (A.21) to
estimate v(T, i). Otherwise we use (A.8). In particular, we note that there
are positive constants Q and C, such that

,8,e'Tr(Y) 2!Q[ I + i-. o ]- I/ewT&Ir - - , (A.22)

and )

H(T, i) 2t C1,

for all f and all T>0. Thus fv(f,.f)' ~j1 e"'1T0(.i) + H(T,.i) when
, T>1.

T I Il.iI
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